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Abstract. The bend region of a twc-dimensional quantum channel of constant width is shown to 
generate a well-type effective potential in lhe problem of electron wave scattering. For namw 
channels the longitudinal modes of electron propagation should be considered as approximately 
independent. In the one-mde approximation the coefficient of electron reflection is calculated 
and ils non-monotonic dependence on the incident electron momentum and the channel bend 
angle is determined. The local maxima in the mflection cmfficient decmase exponentially with 
inereasing electron momentum and increase with increasing channel bend. 

It is known that the electron mobility in the plane of contact of the heterostructures, such 
as GaAs-AlI,Ga,As, exceeds greatly that in the transverse direction [l]. An additional 
restriction to the geometq of electron motion could be caused by applying a negative 
potential of definite configuration in the plane of the heterojunction [2] or by making nmow 
channels and other elementary devices [31 on the basis of lithographic technologies [4-6]. A 
small value (10-100 nm) of at least one of the inherent sizes of these quasi-two-dimensional 
structures together with a small effective mass m = 0.07m, of the charge carriers results 
in essentially quantum effects even in a relatively easily available temperature interval (2- 
200 K). Moreover, in high-quality structures, where the free path of the charge carriers 
is larger than the inherent longitudinal size of the device (channel), the so-called ballistic 
regime of electron transfer [l] is realized. Recently this regime has been studied intensively 
in the framework of the standard two-dimensional Schrodinger equation with such or another 
fixed boundary conditions [7-9]. 

In the present work on the ballistic electron transport in an arbitrarily bent quantum 
channel we started with a quite natural desire to choose a coordinate system that would 
simplify the boundary conditions and later make it possible to convert OUT two-dimensional 
problem into a onedimensional problem. In this approach the coordinate system should 
be adequate for the channel geometry. This can be realized easily at least for channels of 
constant width (in contrast with the channel used in the paper by Lent [SI) and continuous 
bend with a constant sign of curvature. 

Consider an infinitely long two-dimensional quantum channel of constant width d for 
which the internal boundary in a Cartesian system of coordinates x ,  y coincides with the 
curve y = f ( x ) ,  f " ( x )  z 0. The concrete form of the function f ( x )  is not, in principle, 
necessary for further development of the theory but for illustration we often refer to the 
curve 

(1) y = f&) = Ltan~(sinh-'[cotan~cosh(n/l)] - In(cotan,5)] 
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which models well the internal boundary of the channel such as symmetric bend with the 
asymptotic y = zh tang at x / L  + &ca. The hnction f&) has the following advantages: 
the possibility of regulating the angle K - Zg between two straight parts of the channel and 
the smoothness of the junction by means of parameters ,9 and L respectively (0 < ,9 < $7, 

L > 0). 

Y B Gaididei and 0 0 Vakhnenko 

The parametric relations 

give the system of orthogonal V p - V s  = 0 curvilinear coordinates p = p ( x .  y ) ,  s = s ( x ,  y )  
(figure 1). The coordinate p 2 0 varies across the channel so that p = 0 at the internal 
channel boundary and p = d at the external boundary. The coordinate -ce < s c 00 

changes along the channel so that s + --CO for the channel input and s --f ce for the channel 
output. The metric tensor components [ lo ] .  necessaq to record the Laplace operator. in 
these coordinates are written as 

g,, = ( a x / a d 2  + (ay/a,dz = 1 

g,, = (ax /as)2+ (ay/as)2 = [i + p f " ( r ) / s o ( ~ ) i Z  = [i + ~ ( S / L ) P / L I ~ .  (3) 

For a symmetrically bent channel (1 )  for example, the function a(s /L)  (the function of 
channel bend) is as follows: 

sin g cosz @ 
ab (f) = 

SInh*[(S/L) cos @ I  + cos2 g 

p-0 Y = , f k l  

(4) 

Figure 1. The orthogonal cuMlinear coordinales p. s and lheir fastening to lhe internal wall of 
the channel y = f ( x ) .  
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Now we can find the stationary Schrodinger equation 

+ U @ ) @  = &@ 

On the basis of this we shall consider the electron scattering problem in the above-mentioned 
two-dimensional arbitrarily bent quantum channel. Here the coordinates p and s have been 
made dimensionless by the channel width d ,  i.e. 

p = r d  s = u d  (6) 

and the electron energy E by the typical energy h2/2md2 of transverse quantization, i.e. 

E = h2E/2mdZ. (7 ) 

The potential U ( r )  models channel walls which will be assumed to be impenetrable to 
electrons: 

O c r c l  
r < 0, 1 < r .  

U(r )  = 

It is easily seen that, for the channel input a -+ -CO and for its output a -+ 00, where 
a(&u) + 0, our equation (5)  does not differ from the Schrodinger equation for a straight 
channel. 

The difference between straight and bent channels is the largest i n  the region where 
161 5 L / d ,  and this is the reason for electron reflection. The situation is close to that 
known in the gauge field theory when the system with broken symmetry (in the given case 
with bent geometry) i s  completely equivalent to that with restored symmetry but in the 
presence of an additional field [I 11. Since we are interested in longitudinal electron motion, 
then we first eliminate terms with a first derivative in U in the Laplacian by the substitution 

* = JW@ 
and then we decompose @ in the eigenfunctions 

of the Laplacian transverse part for a straight channel: 

As a result we obtain a one-dimensional but infinite system of coupled equations for the 
functions F.(u): 
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It should be noted that the conditions for which the function 0 satisfies at the input and 
output of a channel must coincide with those for the function + since lim,,*,[a(&u)] = 0. 

The above-proposed approach can be fully applied obviously to channels of arbitrary 
width (E d / L  is arbitrary). 

Further we shall consider narrow channels when E << 1. Then, on the one hand, in the 
expressions for Lnn(u) and M.,(u) one can be confined by terms not larger than those of 
the first order in E ,  i.e. 
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and, on the other hand, owing to smoothness of the function Q ( E U )  the solutions of the set 
of equations (12) can be found by semi-classical (wKB) methods [121: 

F, = A,  exp (k Q ( u ) )  U = &U. (14) 

Combining the relations (12)-(14). with accuracy to E inclusively, we find an aggregate of 
normal longitudinal modes that corresponds to the energy E: 

d&/du rr +q,[l + $ Q ( u ) ~  n = 1,2 ,3 , .  . . ,m (15) 

where 

Modes with 4,' > 0 are able to propagate along the channel while those with 4.2 c 0 are 
not. It should be noted that the result (15) and (16) obtained with the adopted precision 
does not depend on the availability of the crossed terms in equation (12). In other words, 
in this approximation each equation 

EZdZ F,,/duz + 4,211 + &a(u)]F, = 0 (17) 

describes completely one of the normal longitudinal modes of the bent channel. From here 
the function ~ ( u )  of the channel bend is seen to affect electron wave propagation similar to 
a potential well, but the depth of such a well is determined by the longitudinal part of the 
incident electron energy. 

Since the longitudinal modes are separated, we shall consider the propagation of an 
arbitrary mode (but such that q: > 0). The approximate basic solutions of equation (17) 
obviously (from (14) and (15)) have the form 

By certain superpositions of these two solutions any precise solution both for the channel 
input and for the channel output can be approached with asymptotic precision. The scattering 
problem under consideration consists indeed in establishing the correspondence between 
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asymptotics such as the incident F;(O 1 U) and the reflecfed F,(O 1 U) waves for the 
input and asymptotics such as the outgoing F:(O [ U) wave for the output. Unlike precise 
solutions where input and output asymptotics are correlated automatically, such correlation 
is a specific problem for semi-classical solutions [12-141 because in the complex plane near 
roots of the equation 

1 + f&&) = 0 (19) 

the basic solutions (18) become invalid. The problem is complicated by the proximity of 
the roots of equation (19) to those of the equation 

I M z )  = 0 (20) 

(i.e. to the poles of the function a(z)); thus using the standard Zwaan approach [12, 131 
appears to be impossible. In this case the most suitable approach is that of Pokrovskiy and 
Khalatnikov [14] dealing with the agreement of the input and output asymptotics in the 
complex plane on the anti-Stokes line 

Here zo is the root of equation (19) nearest to the real axis (further let Imzo 31 0). The 
essence of the above concordance consists in joining the input and output asymptotics with 
suitable (exact at the point Zo) solutions of the one-mode equation (17). 

Let us consider the case, which is most important from the physical point of view, when 
the pairing roots zo and zp of equations (19) and (20) nearest to the real axis are far from 
the other pairing roots. Then, near the points 20 and zp. 

z - IO 
z - 2, 

I + +&a(Z) N k-  

Therefore, after the replacement 

C = -2ik(q./s)(z - z,) A = -i(qn/&)(zo - 2,) (23) 

the one-mode equation (17) is reduced to the standard Whittaker equation [ 151 

d2F,/dtZ + (-4 + A/<)F, 0. (24) 

The constant k is close to unity and, for example in the case of a symmetrically bent channel 
(4), has the form 

For unambiguous interpretation of the fundamental solutions Wi&) and W-AI/Z({ 
exp(&in)) of the equation obtained (equation (24)) we make a vertical cut in the complex 
plane upwards from the point z, so that arg < = 0 on the right-hand bank and arg < = -2rr 
on the left-hand bank. Then with the aid of the asymptotics [15] 

(26) W,,(z)-exp(-yz+~rInz) 1 lzl>> 1,largzl < i ~  
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we find that to the right of 20 on the anti-Stokes line the solution WAI/Z(<) transforms into 
the outgoing wave 
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WAI/Z(<) -+ F;(ZO I z)exp(hIn(2h/e)). (27) 

Applying additionally the propexty 1151 

side by side with the asymptotics (26) we see that to the left of zo on the anti-Stokes line 
the solution WA,/~(<) changes into the desired superposition of the incident and reflected 
waves 

wAl/Z(f) + F , f ( - w  I z)F,+(zo I -m)exp 

2in exp(-Zinh) 
x exp [-A In ($)I r(i -h)r(-h) ' 

The solutions for the input and output of the channel are correlated in such a way that 
asymptotics typical of the scattering problem are obtained. Hence, the modulus square of 
the ratio of the coefficient of the reflected wave io that of the incident wave gives the 
reflection coefficient 

It should be emphasized that here (contrary to the case of the potential barrier 1141) 
Reh > 0. and therefore the reflection coefficient R, is the oscillatory function of h. This 
situation is typical for potential wells with varying depth andfor a width when the reflection 
coefficient can repeatedly go to zero [16]. Analogy with the non-reflecting potential can 
easily be seen in the case of a channel such as a symmetric bend because then 

h = -i(qn/E)(zo - zp)  zl~ qn/4cosB (31) 

and the longitudinal momentum qn, as it is known, regulates the depth of the effective 
potential well. In general, non-monotonic dependence of the reflection coefficient on the 
momentum is also known in the problem of one-dimensional scattering by the square well 
potential [16] hut there it has a distinct nature. Using the general formula (30) for the 
channel such as the symmetric bend (4) with a precision that keeps the basic qualitative 
effects gives 

This relation is hue for channels bent within the angles E < f l  < in - E when the 
roots zo % i($n - p + ~ s ) / c o s p  and zp  = i(fn - j3)/cosp are far from other roots of 



Electron scattering in bent planur quantum channel 3235 

equations (19) and (20). These moderately bent channels, unlike the very straight p < E 

and the very bent $7 - E  < ,9 < i z  channels, are the most applicable for practical use. 
Considering R. as a function of incident electron momentum qn, one can see that 

with increasing qn together with the periodicity of the reflection coefficient an exponential 
decrease in its local maxima also takes place. It should be noted that, at the right-angle bend 
,3 = $z, one of the minima of the reflection coefficient (namely qnmin = 4&) coincides 
with one of the minima in the paper by Lent [SI, although this comparison is not quite 
justified because of the essential difference in the situations under consideration (in our case 
E << 1 and in Lent's paper E 2 I), 

Generally, the dependence of R. on the angle p of channel bending is also oscillatory 
but with increasing p the local maxima of reflection coefficient also increase. 

It should be mentioned that the classical analogue of the scattering problem considered 
above leads to channel non-reflectability independently of the ratio d / L  as well as the 
bending angle 28. This can be understood in the framework of a simple geomeuical 
billiards-like Eeatment of a point particle in a channel with rigid walls. However, we 
would prefer here an analytical explanation based on the Lagrangian 

of the classical particle under study. The corresponding Lagrange equations in terms of 
the longitudinal velocity component v, = .&i and the transverse velocity components 
vp = p are as follows: 

where 

Rewriting the first of these equations in the form 

we come to the straightforward conclusion that the s-independent potential V ( p )  of walls 
is incapable of changing the sign of the particle's longitudinal velocity. As a result the 
reflection coefficient of a collection of classical point particles should be equal to zero. 

Returning to the quantum scattering problem it is appropriate to point out that the 
coefficients of electron reflection may be explicitly connected with the conductance G, which 
is the experimentally observable quantity. For example, if we choose the external 'wire' 
to be a perfect conductor, a two-terminal conductance at vanishing bias and temperature is 
evaluated using the linear conductance formula [17-191 

G = - ~ T  e' nm (9) 
7th nm 

(37) 
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where EF is the Fermi energy and the sum runs over the propagating modes, since evanescent 
modes do not contribute to the current in an infinite channel. The transition coefficients 
T,,(&) in our case are as follows: 

Y B Gaididei and 0 0 Vakhnenko 

so that the quantities R. are responsible for the deflection of the conductance Zmd2Ep/hz- 
dependence from a perfect staircase-like shape. For channels with a large d/L-ratio this 
effect should undoubtedly be more clearly observable. As the bending angle 28 tends to 
zero. the above-mentioned deflection becomes negligible. 

Another kind of imperfection in the conductance staircase-like 2mdZE~/hZ-dependence 
may, for example, be caused by the finiteness of the channel [ZO]. 

In conclusion we recall that the basic formula for the reflection coefficient (30) is 
obtained under a sufficiently general assumption about the form of the quantum channel 
bend. The specific character of the concrete channel is determined by the form of function 
of its bend a(u) and the roots of equations (19) and (U)) associated with this function. 
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